HDU2022 D5T4 Surveying


题意

个矩形与 个特殊点,两个点之间能看到为两点之间线段除去两点严格不交于所有矩形的边。

求使得每个(选取的,存疑,出题人不会写题面)特殊点与每个矩形的顶点被选取的特殊点看到的最小选取数。

思路

预处理两两之间情况,然后直接枚举选取情况并状压 DP 即可。

CODE

似乎因为快读没有负数寄了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include<bitset>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
using uni=unsigned;
using ll=long long;
using db=double;
const int N=21,M=410,FSIZE=1<<24,INF=0x7f7f7f7f;
int n,m;
bitset<M> t[(1<<21)-1];
bitset<N> b[(1<<21)-1];
char BuF[FSIZE],*InF=BuF;
template<typename T>void read(T &x){
bool f=1;
for(;48>*InF||*InF>57;f^=*InF++=='-');
for(x=0;47<*InF&&*InF<58;x=x*10+(*InF++^48));
x=f?x:-x;
}
struct point{
db x,y;
bool operator==(point b){return(x==b.x&&y==b.y);}
bool operator!=(point b){return(x!=b.x||y!=b.y);}
db operator*(point b){return(x*b.x+y*b.y);}
};
struct line{
point a,b;
point operator&(line y){
db t=((a.x-y.a.x)*(y.a.y-y.b.y)-(a.y-y.a.y)*(y.a.x-y.b.x))
/((a.x-b.x)*(y.a.y-y.b.y)-(a.y-b.y)*(y.a.x-y.b.x));
return((point){a.x+(b.x-a.x)*t,a.y+(b.y-a.y)*t});
}
};
point a[N],p[N<<2];
bool check(point x,int l,int r,point t){
if(t==p[l]||t==p[r]) return(0);
auto q=(line){p[l],p[r]}&(line){x,t};
return(
min(p[l].x,p[r].x)<=q.x&&q.x<=max(p[l].x,p[r].x)&&
min(p[l].y,p[r].y)<=q.y&&q.y<=max(p[l].y,p[r].y)&&
min(x.x,t.x)<=q.x&&q.x<=max(x.x,t.x)&&
min(x.y,t.y)<=q.y&&q.y<=max(x.y,t.y));
}
bool can(point x,point y){
for(int i=0;i<m<<2;i+=4){
if(check(x,i,i+1,y)) return(0);
if(check(x,i+1,i+2,y)) return(0);
if(check(x,i+2,i+3,y)) return(0);
if(check(x,i+3,i,y)) return(0);
}
if(x.x==y.x)
for(int i=0;i<m<<2;++i)
if(p[i]!=y&&p[i].x==x.x&&min(x.y,y.y)<=p[i].y&&p[i].y<=max(x.y,y.y)) return(0);
if(x.y==y.y)
for(int i=0;i<m<<2;++i)
if(p[i]!=y&&p[i].y==x.y&&min(x.x,y.x)<=p[i].x&&p[i].x<=max(x.x,y.x)) return(0);
return(1);
}
void work(){
read(n);read(m);
for(int i=1;i<=n;++i){
t[1<<(i-1)].reset();
b[1<<(i-1)].reset();
read(a[i].x);read(a[i].y);
}
for(int i=0;i<m;++i){
read(p[i<<2].x);read(p[i<<2].y);
read(p[(i<<2)+1].x);read(p[(i<<2)+1].y);
read(p[(i<<2)+2].x);read(p[(i<<2)+2].y);
read(p[(i<<2)+3].x);read(p[(i<<2)+3].y);
}
for(int i=1;i<=n;++i)
for(int j=0;j<m<<2;++j)
t[1<<(i-1)][j]=can(a[i],p[j]);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(i!=j) b[1<<(i-1)][j]=can(a[i],a[j]);
int ans=0x7fffffff;
for(int i=1;i<1<<n;++i)
if(__builtin_popcount(i)<ans){
b[i]=b[i&(i-1)]|b[i&-i];
if((t[i]=t[i&(i-1)]|t[i&-i]).count()==m<<2){
bool all=1;
for(int j=i;j;j&=j-1)
if(!b[i][__builtin_ffs(j)]){
all=0;
break;
}
if(all&&__builtin_popcount(i)>1) ans=__builtin_popcount(i);
}
}
if(ans==0x7fffffff)
printf("No Solution!\n");
else
printf("%d\n",ans);
}
int main(){
fread(BuF,1,FSIZE,stdin);
int t;
for(read(t);t--;work());
fclose(stdin);
fclose(stdout);
return(0);
}